SUMS OF POLYNOMIAL-TYPE EXCEPTIONAL UNITS MODULO

نویسندگان

چکیده

Let $f(x)\in\mathbb{Z}[x]$ be a nonconstant polynomial. $n, k$ and $c$ integers such that $n\ge 1$ $k\ge 2$. An integer $a$ is called an $f$-exunit in the ring $\mathbb{Z}_n$ of residue classes modulo $n$ if $\gcd(f(a),n)=1$. In this paper, we use principle cross-classification to derive explicit formula for number ${\mathcal N}_{k,f,c}(n)$ solutions $(x_1,...,x_k)$ congruence $x_1+...+x_k\equiv c\pmod n$ with all $x_i$ being $f$-exunits $\mathbb{Z}_n$. This extends recent result Anand {\it et al.} [On question $\mathbb{Z}/{n\mathbb{Z}}$, Arch. Math. (Basel)} {\bf 116} (2021), 403-409]. We more when $f(x)$ linear or quadratic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Sums modulo Prime Powers

where p is a prime power with m ≥ 2, χ is a multiplicative character (mod p), epm(·) is the additive character, epm(x) = e 2πix pm , and f, g are rational functions with integer coefficients. It is understood, that the sum is only over values of x for which g and f and both defined as functions on Z/(p), and g is nonzero (mod p). The sum is trivial if f and g are both constants, so we shall alw...

متن کامل

Subset Sums modulo a Prime

Let Zp be the finite field of prime order p and A be a subset of Zp. We prove several sharp results about the following two basic questions: (1) When can one represent zero as a sum of distinct elements of A ? (2) When can one represent every element of Zp as a sum of distinct elements of A ?

متن کامل

Counting exceptional units

The number of solutions of the “unit equation” x + y = 1 in units of (the ring of integers of) an algebraic number field of degree n and unit rank r is known to be bounded above by an exponential function of n and r, but the best known lower bounds are only polynomial in n, and the true counts have been computed only in a few cases. We will present recently computed solution counts in number fi...

متن کامل

Enumeration of Power Sums Modulo A Prime

We consider, for odd primes p, the function N(p, m, e) which equals the number of subsets SC{1 ,...,p 1) with the property that &sxm = OL (modp). We obtain a closed form expression for N(p, m, IX). We give simple explicit formulas for N(p, 2, CZ) (which in some casea involve class numbers and fundamental units), and show that for a fixed m, the diffenx~ce between N(p, m, a) and its average valu...

متن کامل

On ternary Kloosterman sums modulo 12

Article history: Received 20 March 2008 Revised 3 June 2008 Available online 6 August 2008 Communicated by Gary L. Mullen

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of The Australian Mathematical Society

سال: 2021

ISSN: ['0004-9727', '1755-1633']

DOI: https://doi.org/10.1017/s0004972721000551